Turn Raw data into actionable insights with Data Enrichment

 Turn Raw data into actionable insights with Data Enrichment
Turn Raw data into actionable insights with Data Enrichment

Data fuels every efficient B2B strategy and is one of the most critical business assets. That helps find the best leads and direct sales outreach for businesses. Yet, the issue with firm contact databases is that you must often update and optimize them. Hence companies need data enrichment to stand out in a competitive marketplace.

The average yearly financial cost of poor data quality in 2017 was $15 million, which damaged organizations the most. ~Forbes

Businesses collect their data from many sources to offer customer-centric services. Data enrichment helps companies to transform current data into a detailed profile. That enables data analytics to provide insightful data to enhance and reuse business data.

The article discusses data enrichment, how it works, and the best approach to it. It also explains its use cases to help you create an actionable database to improve your business’s lead quality and data.

What is Data Enrichment?

Data enrichment is enriching existing first-party data from the current database and adding relevant data from new reliable sources in place of missing or erroneous data. It is the process of enhancing, modifying, and improving raw data. Brands use this process to improve their decision-making and business data quality.

Turn Raw data into actionable insights with Data Enrichment


Any firm can enjoy having enriched data since it makes it more insightful. Adding new categories you derive from existing data is a straightforward form of data enrichment. Organizations can make better business decisions by examining reliable and authoritative data.

Each opportunity is given extra context by adding or improving the lead data. Your chances of converting a lead increase as you learn more about them. Here’s how data enrichment can help your business by adding or improving lead data.

  • Employees can respond to a broader range of inquiries due to the availability of extra information.
  • Data enrichment enables you to label and sort company data for rules making.
  • It enables businesses to process text more and moderate data more.
  • Data enrichment also enables them to provide more insightful responses than they could have with raw data.
  • It increases client satisfaction since richer data enables you to fulfill customers’ requirements.

Automate data enrichment with no-code workflows in 15 minutes!

How Does Data Enrichment Work?

In this era of Big Data achieving data enrichment can be challenging. But the key is Integrating third-party libraries into the data processing architecture. This data enters the system as discrete datasets and flows into central data storage. When this occurs, data is sometimes split into a lake or swamp of unprocessed information. That is useless outside specific circumstances.

Here are 3 methods used to enrich enterprise data, and it also explains how data enrichment works.

Web Scraping

Obtaining massive amounts of data from the internet is known as web scraping. It is a scalable, cheap method of enhancing an enterprise database. And businesses can use it to add data from an accessible web source to a CRM or spreadsheet.

Manual Research

Enhancing leads through manual research is a different choice. That entails searching for tips on sites such as Google or LinkedIn. Then they add the information to a database or worksheet. The strategy works fine for small quantities of data. But ineffective for adding hundreds of new prospects to an existing file.

Data Enrichment Tools

A data enrichment tool or service-providing company accomplishes three things.

  • They collect online data from authoritative third parties
  • Arranges, purify, and format the data
  • Combines data from various sources

Data Enrichment tools and services function for businesses. But one drawback is that you

can only access the information in their database. You would need more choices to select data points and sources with scraping.

Why Should You Use Data Enrichment?

Sorting out the ideal customer record involves effective data enrichment procedures. Because a single dataset cannot contain all the transactional or behavioral information. That is required to provide a single complete picture of the client. Because of this, data enrichment techniques are essential in today’s world. In terms of marketing’s long-term goal of providing customized experiences.

Here’s how data enrichment benefits the company’s infrastructure. And why you should use the process to sort out your business data.

1. Efficient Customer Relationship

Data enrichments ensure better business relationships with consumers. That results in better business opportunities and profitable interactions. It also helps your company create communication strategies that cater to client demands. Suppose you give it access to pertinent customer data. Hence when customers see your business’s dedication, they are more inclined to purchase.

2. Enhance Target Marketing

A one-size-fits-all marketing strategy is in-efficient during this era of technology. And customers across the globe seek more personalized experiences. Hence businesses across the world are deploying targeted marketing strategies. Data enrichment helps organizations segment data to install customized marketing techniques.

3. Elevate Customer Retention

Data enrichment and established customer segmentation serve a significant deal. The segment holds valuable data that might prompt purchases and elevate customer retention.

4. Saves You Money

Data enrichment is a fantastic tool that helps you save money. It prevents storing data that is unimportant to your company’s operations. Adding a reliable external source also enriches your company’s internal data. The money that you would spend on managing the databases. It is then put toward other projects that boost the revenue of your business.

5. Eradicate Redundant Data

Data duplication often costs businesses a fortune, along with reputational damage. Organizations have built up redundant data in their database. Because they are still deciding which data to keep and which to discard. Data enrichment improves data quality by removing low-quality data from raw business data.

Want to automate repetitive data enhancement tasks? Check our Nanonets workflow software. Extract data from documents & enrich your databases on autopilot!

How To Do Data Enrichment? – Step By Step Approach

Turn Raw data into actionable insights with Data Enrichment

To enrich your business data, Use the step-by-step approach for dependable results.

Appending Data

Combining data from various sources can produce an accurate and consistent data set. By merging data from different modules of your business, it will give you a better picture of your client’s prerequisites. While it also enables you to generate accurate statistics for use as features in machine learning models (MLM).

Data Segmentation

Data segmentation enables you to separate or arrange a dataset following particular parameters. Utilizing statistical, regional, technological, or behavioral values is a prevalent segmentation method. The segmentation is then used to categorize and characterize the entity better. While if we talk about marketing use cases, segmenting is also used for targeting.

Derived Attributes

Derived attributes are not part of the initial data set. But these fields are built from a single domain or a group of areas. Since derived characteristics usually contain reasoning applied during analysis, they are helpful. To determine the age, the tactic subtracts the birthday from the current date, which is the derived property that is most considered.

Data Manipulation

Data imputation is the process of replacing values for missing information across fields. Instead of treating the missing number as zero, the estimated value examines your data. Calculating a lacking field’s price based on other matters is a good example.

Entity Extraction

When using complex semi-organized or unstructured data, you can add many data values within a single field. Entity extraction allows you to identify different entities, such as people or businesses. The values should belong to one domain and then be blasted into one or more fields. This strategy will make your business data more meaningful.

Data Categorization

It is the process of grouping data into two categories to organize and analyze it better. You can use either of these approaches to analyze unstructured data to make it more sensible.

  • Sentimental Analysis: The method of removing sentiments from text is known as sentiment analysis. Such as analyzing whether consumer feedback is favorable, unfavorable, or neutral.
  • Topication: The process of determining the “topic” of the text is topication. Such as identifying the genre of the article, if it is about tech, sports, or travel.

Put data enrichment on autopilot with Nanonets. Try it for yourself

What are Different Use-Cases of Data Enrichment?

Turn Raw data into actionable insights with Data Enrichment

Business users agree that primary data makes one of their most significant assets. But not when third-party data enrichment is not used. Business leaders may get exciting insights from the data in their ERP systems.

The most notable achievement occurs when you combine information from several sources. That provides a more detailed picture of a company’s target market and competitors. By adding context, enrichment expands the possibilities for producing economic value.

Here are a few use cases of how data enrichment is assisting companies in producing practical value.

Location-Based Insight

Data enrichment offers telecommunication organizations better insight into their potential and old clients. To help them target customers to increase their sales. While they also engage prospects with the target marketing. Also, identify important demographic parameters such as age, lifestyle, and income range.

Events in a customer’s life suggest they will show interest in a new service. It may also indicate that they are more likely to end their current services. Data enrichment creates an understanding that carriers may use. To make the best investments in retaining existing customers and attracting new ones.

Better Customer Segmentation

The customer segmentation steps follow after lead scoring. This section divides prospects into segments based on how likely they are to purchase. A data enrichment tool provides businesses with vital information on their leads. And ensuring that the information is valid by replenishing the data.


The relevancy of discussions is the core of modern marketing. Because mass marketing methods are no longer effective. Data enrichment provides the ability to build meaningful dialogues. And also enhance the customer experience with rich information about clients and prospects.

Your communications must go beyond comprehending their segmentation and demographic data. Data enrichment is the way to go because you need to be relevant to their interests.

Enrich Customer Information

Marketing was one of the initial sectors to embrace the potential of data enrichment. Marketers collect and analyze data using various marketing techniques. As a part of their search for a deeper understanding of customer behaviors and motives.

But using data enrichment tools allows for a more flexible marketing approach. That will be based on a more complex understanding of clients and their behavior. It helps marketers create detailed buyer profiles by giving more detail to customers.

Property Data Insights

Data enrichment offers valuable knowledge about various factors affecting insurance sector risk. In the past, insurers had a rough idea of the location of the insured property. They assessed the risk level for different risks using basic geographic knowledge.

Yet insurers may provide a more detailed picture of the property risk of specific losses.

What Are The Best Practices For Data Enrichment?

Data enrichment is a one-time procedure only sometimes; you will need to do it often, especially in an analytical environment where you constantly add new to your system.

Using the best enrichment practices is the only option to maintain the quality of your data. While it will also support the quality of your business data. The best practices of data enrichment include:


Any procedure you design should be scalable as your business data will expand with time. While you will also add new processes to your conversion duties, and your data will continue to develop over time. Hence the timing, efficiency, and resources must be scalable for data enrichment processes.

For instance, if you are a part of some mutual business. You will soon determine a processing capacity limit and pay charges. To avoid such problems, automating the process is a good idea as it can use infrastructure that can scale to meet your demands.

Stability & Replication

Each data enrichment operation has to be repeatable and produce the same results. Any process you design in data enrichment must be rules-driven. If you want to be able to repeat it over again with confidence that the results will remain constant.

Indisputable Evaluation Criteria

There needs to be a defined evaluation standard for every data enrichment operation. You must be able to judge whether the procedure has been satisfactory and has run as expected when you compare initial successes with those from the very first tasks. You can see that the outputs are what you would expect from them.


You should finish your business data enrichment activities. Ensure that the results have the same qualities as the data that went into the system. You should also consider possible outcomes for every variable, including unknown result scenarios. Being detailed, you input new values into the system will allow you to be confident. This will ensure that the enrichment process results will always be reliable.


The activity of data enrichment ought to be adaptable to many data sets. Make sure that the procedures you apply can be applied to many datasets. So you can use the same logic for various tasks. You can also use the same method to remove any entry from the data field. This strategy connects all your business needs and data throughout all business domains.

Want to automate repetitive data tasks? Save Time, Effort & Money while enhancing efficiency with Nanonets.

Data Enrichment For Enterprises

Data enrichment will give your business various advantages. But it is a challenging task requiring Big Data usage. Here are a few helpful tips when you need help with how to enhance your current data.

Set Approachable Data Enrichment Goals for Your Business

Businesses can achieve mighty results by implementing data enrichment processes. And it’s possible to elevate your business revenue with data enrichment. But set realistic data enrichment goals you can achieve with your enterprise resources.

Stay Updated with the Latest Enrichment Processes

Data enrichment of your business is not a matter of a few times. But you must stay updated with the changing trends in the data-enriching industry. Pay attention and use all the latest strategies to enrich your business data because this will help your business to stay ahead of your competitors.

Using the Right Tools & Strategies

Suppose your enterprise aims to achieve better revenue and positive outcomes. Make sure you use the best practices or tools for data enrichment of your business. Many data enrichment tools are available but do your research before you settle for one. You can also rely on third-party service-providing companies that offer data enrichment services.

Data Enrichment Automation

It’s important to remember that you need formal training in data science. To avoid making mistakes while analyzing enormous amounts of data. As the data enrichment process differs from understanding it, data enrichment automation increases productivity and data integrity while also enhancing sales results.

This is where it’s essential to understand the potential of machine learning. The technology works miracles as a bridge between the pond of data and the intellectual people who will make some sense of it. Automated data enrichment saves time and resources as it retrieves on your behalf. Here are the following other benefits that automated data enrichment offer:

  • Scaled-down data management
  • Create repeated automated operations to provide enriched data.
  • Use custom messaging to anticipate customers’ wants and establish a connection with them.
  • Activate the data sources that are valuable to the company.

Final Words

Data enrichment is sometimes neglected, but it is critical to creating suitable datasets. This occurs when developers need to consider the data set criteria for analytics. When it’s time to decide what data to capture in apps, the need for analytics data will change over time.

Thus well-developed data transformation tools are the need of the time. They enable team members to change and enrich business data to their unique needs. This empowers the analytics teams to provide accurate insights, promote broader analytics adoption, and be more responsive to the business.

Find out how Nanonets’ use cases can apply to your product.

Source: https://nanonets.com/blog/data-enrichment/


Related post