Four MIT faculty members receive 2021 US Department of Energy early career awards

The U.S. Department of Energy (DoE) recently announced the names of 83 scientists who have been selected for their 2021 Early Career Research Program. The list includes four faculty members from MIT: Riccardo Comin of the Department of Physics; Netta Engelhardt of the Department of Physics and Center for Theoretical Physics; Philip Harris of the Department of Physics and Laboratory for Nuclear Science; and Mingda Li of the Department of Nuclear Science and Engineering.

Each year, the DoE selects researchers for significant funding the "nation’s scientific workforce by providing support to exceptional researchers during crucial early career years, when many scientists do their most formative work."

Resonant coherent diffractive imaging of quantum solids

The quantum technologies of tomorrow –– more powerful computing, better navigation systems, and more precise imaging and magnetic sensing devices –– rely on understanding the properties of quantum materials. Quantum materials contain unique physical characteristics, and can lead to phenomena like superconductivity. Detecting and visualizing these materials at the nanoscale will enable scientists to understand and harness the properties of quantum materials.

Riccardo Comin, the Class of 1947 Career Development Assistant Professor of Physics, leads the Comin Photon Scattering Lab at MIT. The group uses high-energy electromagnetic waves, or X-rays, to observe how new collective states emerge at the nanoscale in quantum materials. This is a difficult feat, as the lenses in cameras and in the human eye do not work for X-rays as they do for visible light. Conventional microscopy techniques are not well-suited for visualizing these complex phenomena.

To overcome this technical limitation, the Comin group has worked on a “lensless” X-ray microscopy approach to image these electronic textures.

“These new imaging techniques are really fascinating and deeply challenge our traditional ways of performing X-ray microscopy,” Comin says. “We now rely on special algorithms that can perform computationally the task of image reconstruction that is normally taken care of by a lens.”

The support from the DoE Early Career Research program will be instrumental to the group’s work developing and applying these novel techniques to study the nanoscale organization of quantum materials of interest. Looking beyond the horizon of quantum materials, the availability of lensless X-ray imaging methods provides a new powerful tool set for the characterization of catalysts, batteries, data storage devices, soft matter, and biological systems.

Spacetime emergence from quantum gravity

Few phenomena in modern physics remain as mysterious as the black hole interior. Black holes seem to wreck the objects that fall into them, as wel


Source - Continue Reading:


Related post