Deploy variational autoencoders for anomaly detection with TensorFlow Serving on Amazon SageMaker

 Deploy variational autoencoders for anomaly detection with TensorFlow Serving on Amazon SageMaker

Anomaly detection is the process of identifying items, events, or occurrences that have different characteristics from the majority of the data. It has many applications in various fields, like fraud detection for credit cards, insurance, or healthcare; network intrusion detection for cybersecurity; KPI metrics monitoring for critical systems; and predictive maintenance for in-service equipment. There are four main categories of techniques to detect anomalies: Classification, nearest neighbor, clustering, and statistical. In this post, we focus on a deep learning statistical anomaly detection approach using variational autoencoders.

Deep learning is a sub-field of machine learning (ML) and has been rapidly growing in the past few years. Due to its flexible structure and ability to learn non-linear relationships between data, deep learning models have been proven to be very powerful in solving different problems. An autoencoder is a type of neural network that can be used to learn hidden encoding of input data, which can be used for detecting anomalies. A variational autoencoder can be defined as being an autoencoder whose training is regularized to avoid overfitting and ensure that the latent space has good properties through a probabilistic encoder that enables the generative process.

To enable real-time predictions, you must deploy a trained ML model to an endpoint. Sometimes you may want to deploy more than one model at the same time. A standard practice is to deploy each model to a separate endpoint. Amazon SageMaker uses the TensorFlow Serving REST API to allow you to deploy multiple models to a single multi-model endpoint. Multi-model endpoints provide a scalable and cost-effective solution for deploying a large number of models. They use a shared TFS container that is enabled to host multiple models. This reduces hosting costs by improving endpoint utilization compared with using single-model endpoints. It also reduces deployment overhead because SageMaker manages loading models in memory and scaling them based on their traffic patterns.

In this post, we discuss the implementation of a variational autoencoder on SageMaker to solve an anomaly detection task. We also include examples of how to deploy multiple trained models to a single TensorFlow Serving multi-model endpoint. You can follow the code in the post to run the pipeline from beginning to end.


The MNIST dataset is a large database of handwritten digits. It contains 60,000 training images and 10,000 testing images. They are small, 28×28 pixel, grayscale images between 0–9.

Variational autoencoder

An autoencoder is a type of artificial neural network used to learn efficient data coding in an unsupervised manner. An autoencoder has two connected networks:

  • Encoder – Takes


Source - Continue Reading:


Related post