Cancel Preloader

An artificial intelligence tool that can help detect melanoma

Melanoma is a type of malignant tumor responsible for more than 70 percent of all skin cancer-related deaths worldwide. For years, physicians have relied on visual inspection to identify suspicious pigmented lesions (SPLs), which can be an indication of skin cancer. Such early-stage identification of SPLs in primary care settings can improve melanoma prognosis and significantly reduce treatment cost.

The challenge is that quickly finding and prioritizing SPLs is difficult, due to the high volume of pigmented lesions that often need to be evaluated for potential biopsies. Now, researchers from MIT and elsewhere have devised a new artificial intelligence pipeline, using deep convolutional neural networks (DCNNs) and applying them to analyzing SPLs through the use of wide-field photography common in most smartphones and personal cameras.

DCNNs are neural networks that can be used to classify (or “name”) images to then cluster them (such as when performing a photo search). These machine learning algorithms belong to the subset of deep learning.

Using cameras to take wide-field photographs of large areas of patients’ bodies, the program uses DCNNs to quickly and effectively identify and screen for early-stage melanoma, according to Luis R. Soenksen, a postdoc and a medical device expert currently acting as MIT’s first Venture Builder in Artificial Intelligence and Healthcare. Soenksen conducted the research with MIT researchers, including MIT Institute for Medical Engineering and Science (IMES) faculty members Martha J. Gray, W. Kieckhefer Professor of Health Sciences and Technology, professor of electrical engineering and computer science; and James J. Collins, Termeer Professor of Medical Engineering and Science and Biological Engineering.

Soenksen, who is the first author of the recent paper, “Using Deep Learning for Dermatologist-level Detection of Suspicious Pigmented Skin Lesions from Wide-field Images,” published in Science Translational Medicine, explains that “Early detection of SPLs can save lives; however, the current capacity of medical systems to provide comprehensive skin screenings at scale are still lacking.”

The paper describes the development of an SPL analysis system using DCNNs to more quickly and efficiently identify skin lesions that require more investigation, screenings that can be done during routine primary care visits, or even by the patients themselves. The system utilized DCNNs to optimize the identification and classification of SPLs in wide-field images.

Using AI, the researchers trained the system using 20,388 wide-field images from 133 patients at the Hospital Gregorio Marañón in Madrid, as well as publicly available images. The images were taken with a variety of ordinary cameras that are readily available to consum

[...]

Source - Continue Reading: https://news.mit.edu/2021/artificial-intelligence-tool-can-help-detect-melanoma-0402

webmaster

Related post